What Do Different Geologists Do?
Geoscientists gather and interpret data about the Earth and other planets. They use their knowledge to increase our understanding of Earth processes and to improve the quality of human life. Their work and career paths vary widely because the geosciences are so broad and diverse. The National Science Foundation considers geology, geophysics, hydrology, oceanography, marine science, atmospheric science, planetary science, meteorology, environmental science, and soil science as the major geoscience disciplines. The following list gives a glimpse of what geoscientists do in these disciplines and a variety of subdisciplines.
Atmospheric scientists study weather processes; the global dynamics of climate; solar radiation and its effects; and the role of atmospheric chemistry in ozone depletion, climate change, and pollution.
Economic geologists explore for and develop metallic and nonmetallic resources; they study mineral deposits and find environmentally safe ways to dispose of waste materials from mining activities.
Engineering geologists apply geological data, techniques, and principles to the study of rock and soil surficial materials and ground water; they investigate geologic factors that affect structures such as bridges, buildings, airports, and dams.
Environmental geologists study the interaction between the geosphere, hydrosphere, atmosphere, biosphere, and human activities. They work to solve problems associated with pollution, waste management, urbanization, and natural hazards, such as flooding and erosion.
Geochemists use physical and inorganic chemistry to investigate the nature and distribution of major and trace elements in ground water and Earth materials; they use organic chemistry to study the composition of fossil fuel (coal, oil, and gas) deposits.
Geochronologists use the rates of decay of certain radioactive elements in rocks to determine their age and the time sequence of events in the history of the Earth.
Geologists study the materials, processes, products, physical nature, and history of the Earth.
Geomorphologists study Earth’s landforms and landscapes in relation to the geologic and climatic processes and human activities, which form them.
Geophysicists apply the principles of physics to studies of the Earth’s interior and investigate Earth’s magnetic, electric, and gravitational fields.
Glacial geologists study the physical properties and movement of glaciers and ice sheets.
Hydrogeologists study the occurrence, movement, abundance, distribution, and quality of subsurface waters and related geologic aspects of surface waters.
Hydrologists are concerned with water from the moment of precipitation until it evaporates into the atmosphere or is discharged into the ocean; for example, they study river systems to predict the impacts of flooding.
Marine geologists investigate the ocean-floor and ocean-continent boundaries; they study ocean basins, continental shelves, and the coastal environments on continental borders.
Meteorologists study the atmosphere and atmospheric phenomena, including the weather.
Mineralogists study mineral formation, composition, and properties.
Oceanographers investigate the physical, chemical, biological, and geologic dynamics of oceans.
Paleoecologists study the function and distribution of ancient organisms and their relationships to their environment.
Paleoclimatologists use various proxies to explore the past climate, which can be used to understand current climate phenomena and help to predict future climate scenarios. (Thanks Emilyisabell)
Paleontologists study fossils to understand past life forms and their changes through time and to reconstruct past environments.
Petroleum geologists are involved in exploration for and production of oil and natural gas resources.
Petrologists determine the origin and natural history of rocks by analyzing mineral composition and grain relationships.
Planetary geologists study planets and their moons in order to understand the evolution of the solar system.
Sedimentologists study the nature, origin, distribution, and alteration of sediments, such as sand, silt, and mud. Oil, gas, coal and many mineral deposits occur in such sediments.
Seismologists study earthquakes and analyze the behavior of earthquake waves to interpret the structure of the Earth.
Soil scientists study soils and their properties to determine how to sustain agricultural productivity and to detect and remediate contaminated soils.
Stratigraphers investigate the time and space relationships of rocks, on a local, regional, and global scale throughout geologic time – especially the fossil and mineral content of layered rocks.
Structural geologists analyze Earth’s forces by studying deformation, fracturing, and folding of the Earth’s crust.
Volcanologists investigate volcanoes and volcanic phenomena to understand these natural hazards and predict eruptions.
So what do you want to be or what are you?