Researchers from Lawrence Livermore National Laboratory (LLNL), Ruhr University Bochum and other international collaborators have provided the first demonstration of how iron atoms, when introduced into titanium, undergo a GB transition. During their study, the researchers observed that the iron atoms segregate (concentrate) to form quasicrystalline-like structures (those with patterns that are ordered but not periodic) at the interface. This work is described in a recent issue of Science.
Strength is relative. Iron, for example, can take 7 tons of pressure per square centimeter. But it’s also very dense and heavy, weighing 7.8 grams/cubic centimeter. Other metals, such as titanium, are stronger and lighter than iron. And certain alloys combining multiple elements are even stronger. For the given density, this material is the strongest known.
Researchers were running the experiment at Sandia when the discovery was made. They only meant to evaluate how cracks formed and spread through a nanoscale piece of platinum using a specialized electron microscope technique they had developed to repeatedly pull on the ends of the metal 200 times per second. Surprisingly, about 40 minutes into the experiment, the damage reversed course. One end of the crack fused back together as if it was retracing its steps, leaving no trace of the former injury. Over time, the crack regrew along a different direction.