As 2012 nears its end, one thing stands out as the major theme in human evolution research this year: Our hominid ancestors were more diverse than scientists had ever imagined. Over the past 12 months, researchers have found clues indicating that throughout most of hominids’ seven-million-year history, numerous species with a range of adaptations lived at any given time. Here are my top picks for the most important discoveries this year.
1. Fossil foot reveals Lucy wasn’t alone: Lucy’s species, Australopithecus afarensis, lived roughly 3.0 million to 3.9 million years ago. So when researchers unearthed eight 3.4-million-year-old hominid foot bones in Ethiopia, they expected the fossils to belong to Lucy’s kind. The bones do indicate the creature walked upright on two legs, but the foot had an opposable big toe useful for grasping and climbing. That’s not something you see in A. afarensis feet. The researchers who analyzed the foot say it does resemble that of the 4.4-million-year-old Ardipithecus ramidus, suggesting that some type of Ardipithecus species may have been Lucy’s neighbor. But based on such few bones, it’s too soon to know what to call this species.
2. Multiple species of early Homo lived in Africa: Since the 1970s, anthropologists have debated how many species of Homo lived about two million years ago after the genus appeared in Africa. Some researchers think there were two species: Homo habilis and Homo rudolfensis; others say there was just H. habilis, a species with a lot of physical variation. It’s been a hard question to address because there’s only one well-preserved fossil, a partial skull, of the proposed species H. rudolfensis. In August, researchers working in Kenya announced they had found a lower jaw that fits with the previously found partial skull of H. rudolfensis. The new jaw doesn’t match the jaws of H. habilis, so the team concluded there must have been at least two species of Homo present.
3. New 11,500-year-old species of Homo from China: In March, researchers reported they had found a collection of hominid bones, dating to 11,500 to 14,300 years ago, in a cave in southern China. Based on the age, you’d expect the fossils to belong to Homo sapiens, but the bones have a mix of traits not seen in modern humans or populations of H. sapiens living at that time, such as a broad face and protruding jaw. That means the fossils may represent a newly discovered species of Homo that lived side by side with humans. Another possibility is that the remains came from Denisovans, a mysterious species known only from DNA extracted from the tip of a finger and a tooth. Alternatively, the collection may just reveal that H. sapiens in Asia near the end of the Pleistocene were more varied than scientists had realized.
4. Shoulder indicates A. afarensis climbed trees: Another heavily debated question in human evolution is whether early hominids still climbed trees even though they were built for upright walking on the ground. Fossilized shoulder blades of a 3.3-million-year-old A. afarensis child suggest the answer is yes. Scientists compared the shoulders to those of adult A. afarensis specimens, as well as those of modern humans and apes. The team determined that the A. afarensis shoulder underwent developmental changes during childhood that resemble those of chimps, whose shoulder growth is affected by the act of climbing. The similar growth patterns hint that A. afarensis, at least the youngsters, spent part of their time in trees.
5. Earliest projectile weapons unearthed: Archaeologists made two big discoveries this year related to projectile technology. At the Kathu Pan 1 site in South Africa, archaeologists recovered 500,000-year-old stone points that hominids used to make the earliest known spears. Some 300,000 years later, humans had started making spear-throwers and maybe even bow and arrows. At the South African site called Pinnacle Point, another group of researchers uncovered tiny stone tips dated to 71,000 years ago that were likely used to make such projectile weapons. The geological record indicates early humans made these small tips over thousands of years, suggesting people at this point had the cognitive and linguistic abilities to pass on instructions to make complex tools over hundreds of generations.
6. Oldest evidence of modern culture: The timing and pattern of the emergence of modern human culture is yet another hotly contested area of paleoanthropology. Some researchers think the development of modern behavior was a long, gradual buildup while others see it as progressing in fits and starts. In August, archaeologists contributed new evidence to the debate. At South Africa’s Border Cave, a team unearthed a collection of 44,000-year-old artifacts, including bone awls, beads, digging sticks and hafting resin, that resemble tools used by modern San culture today. The archaeologists say this is the oldest instance of modern culture, that is, the oldest set of tools that match those used by living people.
7. Earliest example of hominid fire: Studying the origins of fire is difficult because it’s often hard to differentiate a natural fire that hominids might have taken advantage of versus a fire that our ancestors actually ignited. Claims for early controlled fires go back almost two million years. In April, researchers announced they had established the most “secure” evidence of hominids starting blazes: one-million-year-old charred bones and plant remains from a cave in South Africa. Because the fire occurred in a cave, hominids are the most likely cause of the inferno, the researchers say.
8. Human-Neanderthal matings dated: It’s not news that Neanderthals and H. sapiens mated with each other, as Neanderthal DNA makes up a small portion of the human genome. But this year scientists estimated when these trysts took place: 47,000 to 65,000 years ago. The timing makes sense; it coincides with the period when humans were thought to have left Africa and spread into Asia and Europe.
9. Australopithecus sediba dined on wood: Food particles stuck on the teeth of a fossil of A. sediba revealed the nearly two-million-year-old hominid ate wood—something not yet found in any other hominid species. A. sediba was found in South Africa in 2010 and is a candidate for ancestor of the genus Homo.
10. Earliest H. sapiens fossils from Southeast Asia: Scientists working in a cave in Laos dug up fossils dating to between 46,000 and 63,000 years ago. Several aspects of the bones, including a widening of the skull behind the eyes, indicate the bones were of H. sapiens. Although other potential modern human fossils in Southeast Asia are older than this find, the researchers claim the remains from Laos are the most conclusive evidence of early humans in the region.