mouthporn.net
#high speed video – @fuckyeahfluiddynamics on Tumblr
Avatar

FYFD

@fuckyeahfluiddynamics / fuckyeahfluiddynamics.tumblr.com

Celebrating the physics of all that flows. Ask a question, submit a post idea or send an email. You can also follow FYFD on Twitter and YouTube. FYFD is written by Nicole Sharp, PhD.
If you're a fan of FYFD and would like to help support the site and its outreach, please consider becoming a patron on Patreon or giving a donation through PayPal with the button below. Your support is much appreciated!
Avatar

When fluid dynamicists get into the ALS ice bucket challenge, they give it a good fluidsy twist. Here are some selections, including lots of high speed video and an infrared video. Check out all those liquid sheets breaking up. Links to the full videos are below. (Image credits: Ewoldt Research Group, source videoTAMU NAL, source video; BYU Splash Lab, source videos 1, 2, 3, 4)

Avatar

In their latest video, Gavin and Dan of The Slow Mo Guys demonstrate what giant bubbles look like in high-speed video from birth to death. Surface tension, which arises from the imbalance of intermolecular forces across the soapy-water/air interface, is the driving force for bubbles. As they move the wand, cylindrical sheets of bubble film form. These bubble tubes undulate in part because of the motion of air around them. In a cylindrical form, surface tension cannot really counteract these undulations. Instead it drives the film toward break-up into multiple spherical bubbles. You can see examples of that early in the video. The second half of the video shows the deaths of these large bubble tubes when they don't manage to pinch off into bubbles. The soap film tears away from the wand and the destructive front propagates down the tube, tearing the film into fluid ligaments and tiny droplets (most of which are not visible in the video). Instead it looks almost as if a giant eraser is removing the outer bubble tube, which is a pretty awesome effect.  (Video credit: The Slow Mo Guys)

Avatar

For a little more than century, mankind has taken flight in fixed-wing aircraft. But other species have flown for much longer using flapping techniques, the details of which humans are still unraveling. To really appreciate flapping flight, it helps to have high-speed video, like this beautiful footage of a goshawk attacking a water balloon. The motion of the hawk's wings is far more complex than the simple up and down flapping we imitate as children. On the downstroke, the wings and tail stretch to their fullest, providing as large an area as possible for lift. During steady flight, the bird flaps while almost horizontal for minimal drag, but as it approaches its target, it rears back, allowing the downstroke to both lift and slow the bird. In the upstroke, the bird needs to avoid generating negative lift by pushing air upward. To do this, it pulls its wings in and simultaneously rotates them back and up. Its tail feathers are also pulled in but to a lesser extent. Leaving them partially spread probably maintains some positive lift and provides stability. At the end of the upstroke, the hawk's wings are ready to stretch again, and so the cycle continues. (Video credit: Earth Unplugged/BBC; h/t to io9)

Avatar

Prior to reaching terminal velocity, a falling droplet typically oscillates between a prolate shape (like an American football about to be kicked) and an oblate one (like that same football when thrown or carried). As explained by Minute Laboratory, this oscillation behaves very similarly to a mass on a spring. For a spring/mass system, the frequency of oscillation is related to the spring's stiffness; for the falling droplet, it is instead governed by surface tension. If only high schools had high-speed cameras, this would make a fantastic fluids lab experiment! (Video credit: Minute Laboratory; submitted by Pascal W.)

FYFD is sporting a new look and new about and resources pages for those who want more fluidsy goodness.

Source: youtube.com
Avatar

The sloshing of liquids inside solids is usually presented as a difficulty to overcome, as with the transport of tanks, the motion of fuel in satellites, or even the problem of walking with a full cup of coffee. But liquids also make a very effective damper, as in the case of a bouncing ball partially filled with liquid. Here we see high-speed video of the liquid's motion inside the ball as it bounces and rebounds. Part of the ball's kinetic energy at rebound is transferred into the fluid jet, reducing that available for the ball to transfer into potential energy. (Video credit: BYU Splash Lab)

Avatar

In this video, a thin film of viscous glycerin sits between two glass plates. As the plates are forced apart, air gets entrained from either side, causing finger-like instabilities to form between the two fluids. This is a result of the Saffman-Taylor mechanism. The final dendritic pattern depends on the fluid viscosities, surface tension, and any non-uniformities in the apparatus. (Video credit and submission by M. Goodman)

Avatar

This high-speed video--which we do not recommend recreating yourself--features burning gasoline flying through the air. In addition to the sheer entertainment value, there are some neat physics. In the first segment, when they kick a tray of gasoline, one can see lovely fiery vortices forming around the backside of the tray as it's launched. This is the start of the tray's wake. In the latter half of the video, they launch the flaming gasoline from a bucket. Notice how the flames are in the wake while liquid gasoline streams out ahead without burning. This is because it is primarily gaseous petrol that is flammable. As the liquid fuel breaks up into droplets heated by the burning gasoline vapors nearby, the rest of the fuel changes to a vapor state and catches flame. (Video credit: The Slow Mo Guys; submitted by Will T)

Source: youtube.com
Avatar

A ping pong ball bounces off a puddle, drawing a liquid column upward behind it.  This photo shows the instant after the fluid has disconnected from the ball, allowing it to rebound without further loss of momentum to the fluid.  The fluid column begins to fall under gravity, the tiny undulations in its radius growing via the Rayleigh-Plateau instability and eventually causing the column to separate from the puddle.  You can see the whole process in action in this high-speed video. (Photo credit: BYU Splash Lab)

Avatar

Sudden changes in the pressure or temperature in a liquid can create bubbles in a process known as cavitation. Underwater explosions are just one of the ways to induce cavitation in a liquid. As identified in the above video, the shock waves traveling through the liquid force a change in pressure that creates bubbles. When these bubbles collapse, the container is subjected to an enormous oscillation in pressure, which often results in damage. The same phenomenon is responsible for damage on boat propellers as well as this beer bottle smashing trick. Check out these other high-speed videos of cavitation in a bottle: (Video credit: Destin/Smarter Every Day; submitted by Juan S.)

Avatar

This high-speed video shows a soap bubble being blown via didgeridoo, a wind instrument developed by the Indigenous Australians. The oscillations of the capillary waves on the surface of the bubble vary with the frequency of note being played. High frequency notes excite small wavelengths, whereas lower notes create large wavelength oscillations. For more fun, check out what you can do with didgeridoos in space. (submitted by Christopher B)

Avatar

The high-speed video above shows an atomized spray of flammable liquid being ignited using a lighter.  It was filmed at 10,000 fps and is replayed at 30 fps. Although uncontained, this demonstration is similar to the combustion observed inside of many types of engines.  Automobiles, jet engines, and rockets all break their liquid fuel into a spray of droplets to increase the efficiency of combustion.  The turbulence of the flames dances and swirls, with small-scale motions close to the sprayed droplets and larger-scale motions around the vaporized fuel. This variation in size of the scales of motion is a hallmark feature of turbulence and can be used to characterize a flow.

Avatar

To the human eye, the burst of a soap bubble appears complete and instantaneous, but high-speed video reveals the directionality of the process. Surface tension is responsible for the spherical shape of the bubble, and, when the bubble is pierced, surface tension is broken, causing the soap film that was the bubble to contract like elastic that's been stretched and released. Droplets of liquid fly out from the edges of the sheet until it atomizes completely.

You are using an unsupported browser and things might not work as intended. Please make sure you're using the latest version of Chrome, Firefox, Safari, or Edge.
mouthporn.net