mouthporn.net
#deformation – @fuckyeahfluiddynamics on Tumblr
Avatar

FYFD

@fuckyeahfluiddynamics / fuckyeahfluiddynamics.tumblr.com

Celebrating the physics of all that flows. Ask a question, submit a post idea or send an email. You can also follow FYFD on Twitter and YouTube. FYFD is written by Nicole Sharp, PhD.
If you're a fan of FYFD and would like to help support the site and its outreach, please consider becoming a patron on Patreon or giving a donation through PayPal with the button below. Your support is much appreciated!
Avatar

In biology, vesicles contain a liquid surrounded by a lipid membrane. The characteristics of that membrane -- like its stiffness -- can change over time in ways that indicate other changes. For example, vesicles carrying HIV become stiffer as they grow more infectious. In the past, to observe these properties scientists used atomic force microscopes, which require removing the vesicles from the liquid in which they naturally reside. That’s problematic because it potentially changes how the vesicle responds. 

Now researchers have developed a new method: a microfluidic system that subjects vesicles to electric fields in order to deform them and measures their properties without removing them from their carrier fluid. This provides a faster and more reliable method of testing a vesicle’s deformation, capable of testing hundreds of samples at a time. (Image credit: Wikimedia; research credit: A. Morshed et al.; submitted by Eric S.)

Avatar

Fluids like air and water are Newtonian, which means that the way they deform does not depend on how the force on them gets applied. Many other fluids, however, are non-Newtonian. How they behave depends on how force is applied to them. The Internet’s favorite non-Newtonian fluid is probably oobleck, a mixture of cornstarch and water with some fairly extreme properties. When deformed quickly, like when struck with a bat, oobleck doesn’t flow; it shatters. 

What’s happening at the microscopic level is that the cornstarch particles in the oobleck are jamming together. They simply cannot move quickly and avoid one another. When they jam together, the friction between them goes way up and so does the apparent viscosity of the oobleck. Because it doesn’t have time to flow, all that energy goes into breaking off “solid” chunks instead. Once they hit the ground, the pieces of oobleck will puddle, just like any other liquid. (Image and video credit: Beyond the Press; via Nerdist)

You are using an unsupported browser and things might not work as intended. Please make sure you're using the latest version of Chrome, Firefox, Safari, or Edge.
mouthporn.net