In an avalanche, grains spontaneously flow when a slope reaches a critical angle, and they continue flowing until they settle at a new, lower angle. Scientists have long debated why this angle mismatch occurs, and, in recent years, the general opinion was that the avalanche’s inertia kept it flowing long enough to settle at a lower angle. But a new experiment, using a slowly-rotating drum similar to the one above*, shows that friction, not inertia, is the key player.
The researchers used silica beads suspended in water, which allowed them to cleverly control the interparticle friction. In water, silica beads build up negative electrostatic charges, which push the grains apart and eliminate friction. In that frictionless state, the researchers found that the beads tumbled smoothly; their starting and ending angles were always the same.
By adding salt to the water, the researchers were able to eliminate some of the electrostatic charge and thereby tune the friction. When they did that, the difference between starting and stopping angles came back and grew more substantial as the friction increased. All in all, the results indicate that friction between particles is what makes an avalanche avalanche. (Image credit: J. Gray and V. Chugunov, source; research credit: H. Perrin et al.; via APS Physics; submitted by Kam-Yung Soh)
* If you’re curious about the patterns in the image, I explain them in this previous post.
Antlion larvae dig sandpits to catch their prey, and, according to a new study, they rely on the physics of granular materials to do so. The antlion digs in a spiral pattern (bottom), beginning from the outside and working its way inward. As it digs, it ejects larger grains and triggers avalanches that cause large grains to fall inward. This leaves the walls of the final pit lined with small grains, which have a shallower angle of repose and will slip out from under any prey that wander in. The subsequent avalanche will carry the victim to the antlion lying in wait at the center of the pit. (Image credits: antlion larva - J. Numer; antlion digging - N. Franks et al.; research credit: N. Franks et al.; submitted by Kam-Yung Soh)
Avalanches have traditionally been difficult to model and predict because of their complex nature. In the case of a slab avalanche, the sort often triggered by a lone skier or hiker, there is a layer of dense, cohesive snow atop a layer of weaker, porous snow. The presence of the skier can destabilize that inner layer, causing a fracture known as an anticrack to propagate through the slab. Eventually, it collapses under the weight of the overlying snow and an avalanche occurs.
What makes this so complicated is that the snow behaves as both a solid -- during the initial fracturing -- and as a fluid -- during the flow of the avalanche. Researchers are making progress, though, using new models capable of simulating the full event (shown above) by leveraging techniques developed and used in computer animation for films. That’s right -- the physics-based animation used in films like Frozen is helping researchers understand and predict actual avalanche physics! (Image and research credit: J. Gaume et al.; via Penn Engineering; submitted by Kam-Yung Soh)
Granular mixtures with particles of different sizes will often segregate themselves when flowing. In this half-filled rotating drum large red particles and smaller white ones create a stable petal-like pattern. As the drum turns, an avalanche of small particles flows down, forming each white petal. When the avalanche hits the drum wall, a second wave -- one of the larger, red particles -- flows uphill toward the center of the drum. If the uphill wave has enough time to reach the center of the drum before the next avalanche of smaller particles, then the petal pattern will be stable. Otherwise, the small particles will tend to fall between the larger ones, disturbing the pattern. (Image and research credit: I. Zuriguel et al., source; via reprint in J. Gray)
When particles of different sizes fall in an avalanche, they separate out by size. Smaller particles form one layer with another layer of larger particles over the top. This happens because the smaller particles tend to fall in between the larger ones, similar to the percolation theory in the Brazil nut effect. In a slowly rotating drum, this size segregation during an avalanche forms a distinctive pattern (above) called a Catherine wheel pattern. Here, the gray layers form from smaller iron particles, while the white layers are large particles of sugar. Notice that the pattern starts to form during each avalanche, but it freezes in place after grains pile up against the drum wall and cause a shock wave to run back up the avalanche. (Image credit: J. Gray and V. Chugunov, reprinted in J. Gray, source)
To wrap up our look at Olympic physics, we bring you a wintry mix of interviews with researchers, courtesy of JFM and FYFD. Learn about the research that helped French biathlete Martin Fourcade leave PyeongChang with 3 gold medals, the physics of avalanches, and how bubbles freeze.
If you missed any of our previous Olympic coverage, you can find our previous entries on the themed series page, and for more great interviews with fluids researchers, check out our previous collab video. (Video credit: T. Crawford and N. Sharp; image credits: GettyImages, T. Crawford and N. Sharp)
Reports of singing sand dunes date at least as far back as 800 C.E. Strange as it sounds, about forty sites around the world have been associated with this phenomenon, in which avalanches of sand grains on the outer surface of the dune cause a deep, booming hum for up to several minutes. As you can hear in the video above, the sound of the dune is somewhat like a propeller-driven airplane. A leading explanation for this behavior is that it results not from the size or shape of the sand grains but from the structure of the underlying dune.
Measurements show that the booming sand dunes contain a hard packed layer of sand 1-2 meters below the surface. When sand at the surface is disturbed by the wind or sliding researchers, it creates vibrations. Those disturbances have trouble crossing into the air or into the harder layers below. Instead they resonate in the upper surface of the sand, which acts as a waveguide, reflecting and enhancing the sound, just as the body of a violin resonates to enhance the vibration of its strings. For more, check out this video from Caltech or the research paper linked below. (Video credit: N. Vriend; research credit: M. Hunt and N. Vriend, pdf)
Granular materials like sand tend to form heaps when poured. The steepness of the heap at rest is described by the angle of repose, which is determined by a balance between gravity, normal force, and friction on the grains. When a heap of grains is disturbed, it can trigger an avalanche. As can be seen in the video above, avalanches are a surface phenomenon, only moving the top few layers of grain while most of the heap remains stationary. (Video credit: Peddie School Physics)
Humans often trigger avalanches purposefully before natural ones can occur. Either way, avalanches begin when external stresses on the snow pack exceed the strength within the snow pack or at the contact between the snow and the ground. Acceleration of the snow is gravity-driven. If the snow mixes with air, powder clouds can form that carry snow even further than the main slab. Although the snow itself is not a fluid, once an avalanche gets moving, its behavior can be better modeled as a fluid than as a solid.
Some sand dunes can "sing", but not because of the wind! When loose sand slides down over harder, packed sand, a standing wave is formed, causing the entire surface of the dune to vibrate on a single frequency. We hear this as a musical note - typically an E, F, or G. (via io9)
In the Science Storms section of the Chicago Museum of Science and Industry, you'll find the mesmerizing sight of an avalanche disk. This 20ft disk spins at a variable rate and angle, and, from the video, you can see that the glass beads simulating an avalanche on the disk move very much like a fluid even though they are not. This is what's called a granular flow and it's driven by gravity and friction between particles.